Immuno-fluorescent Labeling of Microtubules and Centrosomal Proteins in Ex Vivo Intestinal Tissue and 3D In Vitro Intestinal Organoids

نویسندگان

  • Deborah A. Goldspink
  • Zoe J. Matthews
  • Elizabeth K. Lund
  • Tom Wileman
  • Mette M. Mogensen
چکیده

The advent of 3D in vitro organoids that mimic the in vivo tissue architecture and morphogenesis has greatly advanced the ability to study key biological questions in cell and developmental biology. In addition, organoids together with recent technical advances in gene editing and viral gene delivery promises to advance medical research and development of new drugs for treatment of diseases. Organoids grown in vitro in basement matrix provide powerful model systems for studying the behavior and function of various proteins and are well suited for live-imaging of fluorescent-tagged proteins. However, establishing the expression and localization of the endogenous proteins in ex vivo tissue and in in vitro organoids is important to verify the behavior of the tagged proteins. To this end we have developed and modified tissue isolation, fixation, and immuno-labeling protocols for localization of microtubules, centrosomal, and associated proteins in ex vivo intestinal tissue and in in vitro intestinal organoids. The aim was for the fixative to preserve the 3D architecture of the organoids/tissue while also preserving antibody antigenicity and enabling good penetration and clearance of fixative and antibodies. Exposure to cold depolymerizes all but stable microtubules and this was a key factor when modifying the various protocols. We found that increasing the ethylenediaminetetraacetic acid (EDTA) concentration from 3 mM to 30 mM gave efficient detachment of villi and crypts in the small intestine while 3 mM EDTA was sufficient for colonic crypts. The developed formaldehyde/methanol fixation protocol gave very good structural preservation while also preserving antigenicity for effective labeling of microtubules, actin, and the end-binding (EB) proteins. It also worked for the centrosomal protein ninein although the methanol protocol worked more consistently. We further established that fixation and immuno-labeling of microtubules and associated proteins could be achieved with organoids isolated from or remaining within the basement matrix.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust bioengineered 3D functional human intestinal epithelium

Intestinal functions are central to human physiology, health and disease. Options to study these functions with direct relevance to the human condition remain severely limited when using conventional cell cultures, microfluidic systems, organoids, animal surrogates or human studies. To replicate in vitro the tissue architecture and microenvironments of native intestine, we developed a 3D porous...

متن کامل

SnapShot: The Intestinal Crypt

Intestinal organoids provide a convenient and physiologically relevant in vitro model system to study the intestinal epithelium. This 3D, multicellular culture system recapitulates the lumen and crypt-villus structure of the intestine, and incorporates all of the cell types found in the adult intestinal epithelium. Intestinal organoids make it easier than ever to get in vivo insight from in vit...

متن کامل

Organoid and Enteroid Modeling of Salmonella Infection

Salmonella are Gram-negative rod-shaped facultative anaerobic bacteria that are comprised of over 2,000 serovars. They cause gastroenteritis (salmonellosis) with headache, abdominal pain and diarrhea clinical symptoms. Salmonellosis brings a heavy burden for the public health in both developing and developed countries. Antibiotics are usually effective in treating the infected patients with sev...

متن کامل

Salmonella‐infected crypt‐derived intestinal organoid culture system for host–bacterial interactions

The in vitro analysis of bacterial-epithelial interactions in the intestine has been hampered by a lack of suitable intestinal epithelium culture systems. Here, we report a new experimental model using an organoid culture system to study pathophysiology of bacterial-epithelial interactions post Salmonella infection. Using crypt-derived mouse intestinal organoids, we were able to visualize the i...

متن کامل

Three-Dimensional Gastrointestinal Organoid Culture in Combination with Nerves or Fibroblasts: A Method to Characterize the Gastrointestinal Stem Cell Niche

The gastrointestinal epithelium is characterized by a high turnover of cells and intestinal stem cells predominantly reside at the bottom of crypts and their progeny serve to maintain normal intestinal homeostasis. Accumulating evidence demonstrates the pivotal role of a niche surrounding intestinal stem cells in crypts, which consists of cellular and soluble components and creates an environme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2017